博客
关于我
《机器学习与实践》读书笔记及代码(三)
阅读量:146 次
发布时间:2019-02-27

本文共 2260 字,大约阅读时间需要 7 分钟。

#波士顿地区,用线性回归,去预测房价from sklearn.datasets import load_bostonboston = load_boston()print boston.DESCRfrom sklearn.cross_validation import train_test_splitimport numpy as npX = boston.datay = boston.target#如果没有这里的话,下一步会报错# X.shapeX_train, X_test, y_train, y_test = train_test_split(X,y,random_state=33,test_size = 0.25)print"The max target value is:",np.max(boston.target)print"The min target value is:",np.min(boston.target)print"The average target value is:",np.mean(boston.target)# print X_train.shape# print y_train.shape#从上面当中,显然发现预测目标房价之间,差距很大,因此,应该先标准化处理from sklearn.preprocessing import StandardScalerss_X = StandardScaler()#分别对训练和测试数据的特征,以及目标值进行标准化处理X_train = ss_X.fit_transform(X_train)X_test = ss_X.transform(X_test)ss_y = StandardScaler()#这里一定要有reshape(-1,1)这样一个过程,否则会报错,y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))#此处使用十分简单的LinearRegression和SGDRegression分别对美国波士顿地区的房价进行预测from sklearn.linear_model import LinearRegressionlr = LinearRegression()lr.fit(X_train,y_train)lr_y_predict = lr.predict(X_test)from sklearn.linear_model import SGDRegressorsgdr = SGDRegressor()sgdr.fit(X_train,y_train)sgdr_y_predict = sgdr.predict(X_test)#使用LinearRegression模型自带的评估模块。并输出结果print 'The value of default measurement of LinearRegression is:',lr.score(X_test,y_test)from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_errorprint 'The value of R-squared of LinearRegression is:',r2_score(y_test,lr_y_predict)print 'The mean squared error of LinearRegression is:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(lr_y_predict))print 'The mean absolute error of LinearRegression is:',mean_absolute_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(lr_y_predict))#使用SGDRegression模型自带的评估模块。并输出结果print 'The value of default measurement of SGDRegressor is:',sgdr.score(X_test,y_test)print 'The value of R-squared of LinearRegression is:',r2_score(y_test,sgdr_y_predict)print 'The mean squared error of LinearRegression is:',mean_squared_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(sgdr_y_predict))print 'The mean absolute error of LinearRegression is:',mean_absolute_error(ss_y.inverse_transform(y_test),ss_y.inverse_transform(sgdr_y_predict))

支持向量机(回归)

 

转载地址:http://ixjb.baihongyu.com/

你可能感兴趣的文章
mysql备份与恢复
查看>>
mysql备份工具xtrabackup
查看>>
mysql备份恢复出错_尝试备份/恢复mysql数据库时出错
查看>>
mysql复制内容到一张新表
查看>>
mysql复制表结构和数据
查看>>
mysql复杂查询,优质题目
查看>>
MySQL外键约束
查看>>
MySQL多表关联on和where速度对比实测谁更快
查看>>
MySQL多表左右连接查询
查看>>
mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
查看>>
mysql如何做到存在就更新不存就插入_MySQL 索引及优化实战(二)
查看>>
mysql如何删除数据表,被关联的数据表如何删除呢
查看>>
MySQL如何实现ACID ?
查看>>
mysql如何记录数据库响应时间
查看>>
MySQL子查询
查看>>
Mysql字段、索引操作
查看>>
mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
查看>>
mysql字段类型不一致导致的索引失效
查看>>
mysql字段类型介绍
查看>>
mysql字段解析逗号分割_MySQL逗号分割字段的行列转换技巧
查看>>